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Abstract—-Complex networks are one of the tools commonly used
in modeling all kinds of events that are related to each other. The
identification of effective nodes in complex networks is an
important issue needed for the analysis of complex networks.
Degree, closeness and betweenness measures are the most
important centrality measures commonly used to analyze
networks. As a local metric, degree is relatively simple and less
effective, although global measures such as the measure of
closeness and betweenness can better define effective nodes.
However, there are still some disadvantages and limitations of all
of these measures. Degree, closeness and betweenness measures
are only the data obtained from the topological structure of the
network. However, in determining the centralization of the node,
other than the topological structure of the network that affect the
formation of the network, but not expressed in the topological
structure of the network is also effective. In this study, the node
weighting method was developed for the determination of node
centralization in the network and compared with the current node
centering criteria. The experimental study was conducted on a
network of players and played competitions in the Australian
Open Tennis Tournament held between 2000-2017. By using
criteria such as time, experience and success, the weights of the
nodes were calculated and compared with the node centering
criteria. The results obtained from the experimental study show
that the node weighting method gives successful results in the
determination of active nodes in complex networks.
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I. INTRODUCTION

people with each other has been developing and growing

for centuries. Together with technological developments,
these communications and sharing methods are also
developing. Everything that people do together is a natural
result of communication and sharing. The fact that people
connect and interact with each other directly or indirectly
constitutes the elements of a complex network. Structures
defined as complex networks are not limited to expressing the
relationship between people and each other. Everything that has
interactions or connections in various ways is actually a part of
complex networks. Complex network science, gather and
analyze all kinds of structure, system and situation that have the
relationship, connection and sharing between them, direct and
indirect ways, within the framework of certain rules and
disciplines. [1]. In the analysis of complex networks, the
position and importance of the nodes in the network is
important to examine how the information flows in the network
and the structure of the network [2]. Centrality is one of the

The communication and emerging interaction process of

most important concepts that are considered when examining
the structure of a complex network. The concept of centrality is
a set of indicators that reveal the importance of the node in the
network in a complex network. In most complex networks,
some links or nodes are more central than others. To measure
the centrality of the nodes, there are measures of centrality, such
as degrees, interac- tivity, proximity and eigenvectors. These
measures of centrality are obtained by using the topological
information of the network. However, in complex networks,
only topological consideration of the centrality of a node may
not be sufficient to reveal some important nodes in the network.
Increasing or decreasing the effect of the nodes on the neighbors
with the expansion of the network over time can be important
in determining the node center. According to the topological
structure, the metrics that determine the node centrality do not
take into account the factors that may affect the node centrality
except the topological structure of the network. Depending on
the time and the different conditions, changes in the nodes state
in the network should be taken into account in revealing the
node centrality. In this study, which emphasizes the importance
of node weighting in uncovering node centrality, in order to
calculate the weights of the nodes, the common criteria for all
nodes in the network were determined and the weights of the
nodes were calculated using the multi-criteria decision-making
method. In the experimental study, node weighting method was
used to reveal the node centrality in the network in a network
composed of competitions played between 2000-2017 Australia
in the Open Tennis Tournament. The experimental results show
that the node weighting method gives successful results in order
to reveal the node centrality.

Il. METHOD

A. Network Centrality

The centrality factor is an important concept, particularly in
complex network structures. Network centrality can be defined
as the criterion of nodes in a complex network. [3]. This
criterion measures the strength of a node's dependence on other
nodes while on the other hand it measures its effectiveness on
other nodes. In determining the important and active locations
in the network, there are usually the most important or most
known nodes. Different centrality measures have been
proposed to determine network centrality. The proposed
centrality criteria and the characteristics of the node position in
social networks have been tried to be defined and measured. [4].
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Centrality Criteria

A complex network analysis is the study of the interactions that
are in interaction with each other, the types of relationships and
the interaction between relationships. The concept of
relationship can be defined as the link between social entities.
[4]. The individuals, objects and communities that form the
basis of relations are expressed by nodes in network analysis
[5]. The relations established in the social networks due to the
interaction between the nodes are the equivalent of the concept
of links. The relationship between individuals can be expressed
in different types such as friendship bond, kinship bond,
competition tie, financial tie, belief tie [6-11]. The proposed
criteria for examining the link structures between nodes in the
networks formed contain information about the importance of
the node in the network.

Degree Centrality

Degree centrality, which is the simplest of the criteria used to
reveal network centrality, is calculated by the number of links
to a node on the network. Although it is simple to calculate, it
is an important criterion that can indicate the position of the
node in the network. In most complex networks, the more links
a node has, the more important and powerful it is. In fact, the
node with the highest degree can be interpreted as the most
active member of the network. In cases where links are direct,
the number of in-degree links and the number of out-degree
links are calculated separately [12,13].

Eigenvector Centrality

The Eigenvector Centrality criterion, another criterion used to
elucidate network-centrality, is a criterion that indicates that the
links owned by the node taken into account when calculating
the rating are not equal. For a node on the network, the effect of
links to key nodes may be more than any other ordinary links.
The fact that the nodes on which it is connected are more
centrally indicate that the node will be in a more central
position. When calculating this criterion, the totality of the
neighbors' centrality is taken into account. [14,15].

Betweenness Centrality

Betweenness centrality is one of the most complex criteria to be
calculated in the centrality criteria, which is one of the criteria
used to elucidate network-centrality. Betweenness centrality is
found by the ratio of the most shortcuts that pass through a node
in the network. First, the most shortcuts be found between all
node pairs in the network. Ratio between this shortcuts
(geodesics) and number of path that node is located on gives the
betweenness centrality. Because it is a very costly measure that
can be calculated on large networks, it can also be calculated by
going down to certain level neighbors. Due to their location, the
nodes with a high degree of gravity are more important than the
other nodes and will be more aware of what is going on in the
network [12,13].

Closeness Centrality

The Closeness centrality is another centrality criterion used to
reveal network. It is found that any node in the network obtains
the shortest mean distance to all other nodes (geodesic
distance). If the links are directional, these aspects should be
taken into consideration when finding the shortcuts. In this case,
two different metric which are in-closeness and out-closeness
are calculated [12, 14].

B. Gephi

Because of the large number of nodes and links due to the nature
of complex networks, it is important to use appropriate analysis
tools to ensure that the data obtained from these nodes and links
are accurate, understandable and interpretable. In complex
network analysis, it is important to detect network centrality, to
find shortest paths between nodes, to obtain clustering
coefficients and to calculate degree distributions. In addition,
the visualization of the data obtained in an appropriate manner
has an important place in the understanding and analysis of the
structure of the network. In this study, Gephi software was used
to obtain data showing the centrality of the network of tennis
competitions and to visualize the network. Gephi software is
preferred because of it is free and has been instrumental in
choosing to provide detailed options during the performance of
the analysis data and the visualization of the network[18].

C. Approach of Logarithmic Concept (APLOCO)

One of the multi-criteria decision-making methods, APLOCO,
uses Multi-Layer Perceptron, which is one of the Deep
Learning methods in the field of artificial intelligence in
determining the weight of criteria. One of the important features
of APLOCO is that it is not dependent on artificial intelligence
at determining the weight of the criteria. Criterion weights can
also be determined by any method. As a result, the determined
weights can be used in this method if the criteria weights are
determined by any method. The reason for using APLOCO
method in this study is that the data used for experimental study
does not show normal distribution and allows to calculate the
node weight from different criteria. The fact that artificial
intelligence does not exclude the data and have the ability to
learn from the data constitutes one of the main reasons for using
the criteria in the process of determining the weight [16].

D. Implementation Steps of APLOCO
The implementation of APLOCO is completed in 5 steps;

e  Step 1: Building the decision matrix (DM)

e Step 2: Calculation of starting point criteria (SPC)
values

e Step 3: Forming the logarithmic conversion (LC)
matrix

e Step 4: Determining the weights of criteria (WC)
and calculating the weighted logarithmic conversion
(WLC) matrix

e Step 5: Determination of the best alternative (BA)
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Figure 1: APLOCO Application Steps.

Step 1: Building the decision matrix (DM)

The generated decision matrix (Xij) is a C X R dimensional
matrix that contains the criteria in the rows and the alternatives
in the columns. Here, respectively, the number of criteria and
the number of alternatives are re-evaluated. Xj refers to
decision variables and Xi refers to the values of decision
variables. This matrix is shown in the equation in (1).

Alternatives

Criteria [4, 4, . A]
[C1] [ X Xz o Xor 1 [ X1 Xip Xir 1
X = Cz | Xo1 Xpz 0 Xpr | | Xo1 Xop o Xop |
B B4 I DR I R (1)
l J | e | | e |
e lxa e = e b Txaxe - x|

Step 2: Calculation of starting point criteria (SPC) values

At this stage, if the criterion value needs to be maximum, the
maximum value between the values of the corresponding
criterion in that line is determined as the maximum value. If the
criterion value is to be minimum, the minimum value between
the values in the corresponding row is set to the minimum value.
In this case, if the desired criteria is the maximum, the criteria
values in the row to which the maximum value belongs are
subtracted from the maximum value. On the other hand, if the
required criterion is minimum, the minimum value is subtracted
from the criterion values in which it belongs. In order to
perform said operations, the Pij values containing the maximum
and minimum starting point criterion values are obtained using

the equations (2), (3) and (4). Here, i=1,1.c;j=1, ... ., 1.
Py = {maxxli — xy; if Py is the maximum starting point criterion. (2)
Xi;—minx;; if Py is the minimum starting point criterion. (3)

[ Xy —minx;; Xy, —minx; - X, —minx;; ] [ Xy X1z o X 1
¥ Xy —minxy; Xy —minxg; - Xy —mina; | Xz, X22 o Xop I (4)
= | _
Sl e |
l J | |
Xip —minx; Xpp — minxg; - Xy, —minx; [ %y xo - %, |

Step 3: Forming the logarithmic conversion (LC) matrix
Atthis stage, +2 integer value is added to each of the Pij (P11,
P12, P13, ...... .., P1r) values in the rows. The LC values are
then calculated by calculating the cyclic natural logarithm as
opposed to the results obtained. This is done by the equation (5)
and the normalization process is completed. Logarithmic
transformation matrix is then obtained in equation (6). Here, In
is undefined when 0 and negative values occur and In = 0. For
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these reasons, +2, greater than 1 in the equation (4), is
considered to be an integer value. Another reason to add
number 2 as an integer value to the logarithm value at that time
is to avoid excessive values and negative values and to ensure
that the values are positive.

1 L L
In(x) = log.(x) and Li/_W for(i=1...... candj=1....1) (5)
[ 1 1 ER
||n(Pn+2) |n(mz+2) |n(m +2)| [ bk o b
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e F | (6)
| S R
l|n(p¢,+2) |I'|(p2+2)

|
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Step 4: Determining the weights of criteria (WC)

and calculating the weighted logarithmic conversion
(WLC) matrix

W is a weight coefficient. Here,

wy € Rve EL,wiw, € Rve ZL,wi=1 The equation of
the WLC matrix (7) is obtained by multiplying the logarithmic
transformed lij values by the weight levels (wi) of the criteria
determined by any method.

ligwy  lpwy = Lywy tin tiz vty

Lawy  lppwy - erWZ t21 522 ety
I . . - S

llclwn leawn chn lltcl tch J

Step 5: Determination of the best alternative (BA)

The maximum values of the criteria in each order are
determined as optimal solution values (Bj) and after the total
score is obtained as Bsj. This process is done by the equations
(8) and (9). The final scores (ji) of each alternative are
calculated by proportioning the total scores (asi) of the criterion
values of the alternatives to the optimum solution values (Bsj)
collected. This process is done by (10) and (11) equations,
respectively. The scores obtained from Equation (11) are
between 0 and 1, and the scores are allowed to be evaluated
within this range. Then the 6i values are sorted from large to
small and the first order alternative is considered the most
suitable alternative [17].

st = {max tl-j}and BL] (8)
= {tl,tz,t3, P tn}

c ©)
Bsi =Z(111121131 """ lln

i=1

c (10)
asj = Z(t11t21t31 ------ 1 tn

j=1
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E. Node Weighting Method

Node weighting is the process of calculating the weights of the
nodes in the network according to the determined criteria by
APLOCO method which is one of the multi criteria decision
making methods. In this approach, the calculated node weights
indicate the importance of the node in the network. As the
weight is reduced, the position of the nodes is away from the
centrality of the network as the weight of the node is at the
center of the network.

I1l. EXPERIMENTAL STUDY

In the experimental study, the network in Figure 2 was formed
using the athletes who competed in the Australian Open [17]
tennis tournaments between 2000-2017 and the competitions
taking place between them.

—— i

ol = o witt ,"jl‘

[ Ro ‘A Ciasllia &
[ Haitahdian 0.

L

Figure 2: Network Created for Australian Open Tennis
Tournament

In the created network, the nodes are composed of athletes and
the links are composed of the matches between athletes. The
links between the nodes are constructed as unidirectional. The
node and link information for the created networks is shown in
Table 1.

Table 1: Nodes and Links for the Tennis Network

Australian Open
Nodes 553
2156

Edges

Centrality measures were calculated by modeling the network
through the Gephi program to reveal the nodes in the center of
the network.

A. Criteria

APLOCO method was used for the proposed node weighting
method and node weights were calculated. For data to be used
in APLOCO, time, experience, success and tour criteria are
determined according to the structure and characteristics of the
network. The criteria in the generated network are shown in
(12), (13), (14) and (15).

Time Criteria

In time-dependent expanding networks, the position of the
nodes over time is an effective element in determining their
position in the network. In the tennis network, the effectiveness
of an athlete who has decreased or ended his / her participation
in tennis competitions must decrease in the network. Therefore,
the time criterion should be used as an important parameter in
determining the effectiveness and importance of nodes in the
network. The time criterion used in this study was calculated as
shown in equation (12) as the ratio of the last year of the
tournament year played to the time interval of the netting
weighted network.

The Last Competition Year — The First Tournament Date
The Last Year Calculated — The First Year Calculated + 1

(12)

Time

Here, the last competition year refers to the year of the last
tournament where the athlete participated, the first competition
year refers to the year of the first tournament where the athlete
participated, the last year calculated refers the date of the last
tournament in the network that will be weighted, the calculated
year refers to the date of the first tournament that took place in
the network to be weighted. A value of 1 in Equation 2.30 is
used to avoid the result of 0 when the desired range corresponds
to the same year.

Experience Criteria

In a network of sporting events, such as a tennis tournament,
the athlete's experience in the tournament is effective being in
the center of the network. The more matches an athlete has, the
more likely he is to link with so many athletes. The criterion of
experience used in this study was calculated as shown in (13)
as the ratio of the number of matches played in tournaments to
the total number of matches in tournaments.

The Number Of Matches Played
The Total Number Of Matches

(13)

Experience =

The number of matches played here is the total number of
matches of the athlete, while the total number of matches played
represents the total number of competitions in tournaments.
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Success Criteria

The expansion of the network in sports tournament networks is
not just about joining new athletes to the network. Athletes with
high success in the network also have effects on the expansion
of the network. It is possible for the athlete with high success to
be positioned in the center of the network due to the fact that he
competes with many athletes. The success in the tournaments
as well as the number of matches played by the athlete is a
criterion that increases the effectiveness and importance of the
network. The success criterion used in this study was calculated
as the ratio of the number of matches won by the athlete in the
tournaments to the total number of matches played in the
tournaments as shown in the equality (14).

The Number Of Matches Won
The Number Of Matches Played

(14)

Success =

Here, the number of matches won by the athlete refers to
matches won by athlete in the matches played, the number of
matches played refers to the total number of competitions the
athlete has in tournaments.

Tour Criteria

Considering the fact that the tennis tournaments are composed
of tours within themselves, as in most sports events, the number
of rounds played by an athlete in each tournament is one of the
factors in the position of the athlete in the network. The fact that
the athlete remains in the rounds in the tournament is an
important criterion in revealing the role of the athlete in the
network. The tour criterion used in this study as shown in (15)
is obtained by summing the ratio of the number of rounds
played by the athlete per year between the years determined and
the total number of rounds in the tournament.

The Last Competition Year

The Number Of Rounds Played .,
The Total Number Of Rounds

(15)

Tour =

Year=The First Tournament Date

Here, the first competition year refers to the date of the first
tournament on the network that will be weighted by the node,
the last competition year refers to the date of the last tournament
on the network that will be weighted by the node, the number
of rounds played by the athlete refers to the number of rounds
played by the athlete on a yearly basis, the total number of
rounds refers to the total number of rounds held on a year.
Although the number of criteria for calculating the weights of
the nodes is completely independent, it is important to construct
the parameters with distinctive features according to the
structure and characteristics of the network.

After determining the criteria for the weights of the nodes,
multi-criteria decision-making method APLOCO was carried
out and the weights of the nodes were calculated based on the
determined criteria. These weights could also be used to
evaluate the importance and effectiveness of nodes in the
network. After calculating the weights of the nodes, the nodes

in the center of the network have been revealed according to the
proposed node weighting method.

IV. RESULTS AND FINDINGS

In the experimental study, a network of competitions between
the years 2000-2017 of the Australian Open Tennis Tournament
was established, and the network centrality criteria and the
proposed node weighted centrality in this study were calculated.
Calculated degree of centrality is shown in Table 1, Closeness
centrality in Table 2, eigenvector centrality in Table 3,
betweenness centrality in Table 4, and node-weighted centrality
criteria are shown in Table 5.

Table 2: Degree Centrality

Athlete Degree
1 Federer R. 71
2 Ferrer D. 51
3 Djokovic N. 48
4 Murray A. 46
5 Berdych T. 45
6 Nadal R. 45
7 Roddick A. 43
8 Wawrinka S. 42
9 Hewitt L. 40
10 | Tsonga J.W. 39
Table 2: Closeness Centrality
Athlete Closeness Centrality
1 FedererR. 0,460
2 Nadal R. 0,429
3 Ferrer D. 0,425
4 Djokovic N. 0,421
5 | Roddick A. 0,420
6 Murray A. 0,418
7 Baghdatis M. 0,415
8 Berdych T. 0,413
9 Hewitt L. 0,410
10 | Wawrinka S. 0,409
Table 3: Eigenvector Centrality
Athlete Eigenvector Centrality
1 Federer R. 1,000
2 Nadal R. 0,762
3 Djokovic N. 0,750
4 Ferrer D. 0,692
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5 Murray A. 0,640
6 Wawrinka S. 0,636
7 Tsonga J.W. 0,602
8 Roddick A. 0,598
9 Baghdatis M. 0,598
10 Berdych T. 0,580

Table 4: Betweenness Centrality

Athlete Betweenness Centrality
1 Federer R. 0,1195
2 Ferrer D. 0,0547
3 Berdych T. 0,0462
4 Murray A. 0,0441
5 Hewitt L. 0,0424
6 Roddick A. 0,0414
7 Djokovic N. 0,0377
8 Nadal R. 0,0372
9 Lopez F. 0,0369
10 Tsonga J.W. 0,0342
Table 5: Node Weighting Centrality
Athlete Node Weighting Centrality
1 Federer R. 0,975
2 Djokovic N. 0,889
3 Nadal R. 0,869
4 Murray A. 0,857
5 Wawrinka S. 0,844
6 Berdych T. 0,839
7 Ferrer D. 0,837
8 Tsonga J.W. 0,837
9 Raonic M. 0,835
10 Agassi A. 0,833

Calculates network centrality according to the topological
structure of the network; According to the results of Table 1,
Table 2, Table 3 and Table 4, it is seen that the nodes, which
have lost their importance over time, are in the centrality of the
network. It has been observed that sportsmen such as Ferrer,
Hewitt and Roddick, who have not played for a long time, are
in the center of the network due to the high number of
competitions in the past and still take place as popular nodes.
However, it is important that these athletes, who have not
played for a long time, have reduced their effectiveness and
importance in the network and these situations can be identified
when analyzing the network.

In the present study, it is seen that the weighted centrality results
of the proposed node consist of the athletes who continue to
play tennis as seen in Table 5. This indicates that effective and
important nodes in the network can be detected. It is seen that
the athletes who stopped playing tennis or who have lost their
success in the early rounds, have moved away from the
centrality of the network.

V. CONCLUSION

In this study, node weighting was performed according to the
criteria determined by multi-criteria decision-making method in
a network composed of athletes in Australian Open tennis
tournaments played between 2000-2017 and their competitions.
The results of the network centrality calculated according to the
obtained node weights were compared with the results of the
network centrality criteria used in the complex networks. As a
result of the experimental study, it was observed that the
proposed node-weighted centrality criterion yielded more
successful results compared to the network centrality measures
that were calculated by topological measurements. Particularly
in dynamic networks and time-varying conditions are included,
more effective results have been obtained in determining the
effective and important nodes in the network with the node-
weighted centrality criterion. Especially in networks which are
formed by different factors and which continue to grow,
calculating network centrality with the topological structure of
the network as well as the factors affecting the growth of the
network, the network can be analyzed better.
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