Makine Öğrenme Yöntemleri Kullanarak Eksik Verilere Atama Yapılması Üzerine Bir Vaka Çalışması: A Case Study on Assigning Missing Data Using Machine Learning (ML) Methods
Veri bilimcilerin ya da veri analizleriyle uğraşan akademi ve saha çalışanların karşılaştığı problemlerin başında veri setindeki değişkenlerde eksik gözlemlerle diğer bir deyişle missing data gelmektedir. Literatürde eksik veri atama yöntemleri arasında bir çok yöntem bulunmakla birlikte öne çıkan yöntemlerden bazıları şöyledir: Eksik gözlemlere ortalama değer atama Eksik gözlemlere 0 değeri atama Eksik gözlemlere median değeri […]
Devamını OkuR Programlama Diliyle Sınıflandırma Problemlerinin Çözümünde Karar Ağacı Algoritmaları Üzerine Bir Vaka Çalışması: A Case Study on Decision Tree Algorithms in Solving Classification Problems with R Programming Language
Giriş Günümüzde veri madenciliği uygulamalarının yaygınlaşması ve büyük veri kavramının öne çıkmasıyla birlikte analiz metotları da değişmiştir. Bugüne kadar genellikle bulut (cloud) veri tabanları üzerindeki veri setleri indirilerek analize konu ediliyordu. Ancak gelişen teknoloji veri madenciliği yöntemlerinde de önemli değişiklikler ve bazı soruları beraberinde getirmiştir. Bu sorulardan bazıları şöyledir: Online veya offline olarak dokümanlarda analize […]
Devamını OkuR Programlama Diliyle Sınıflandırma Problemlerinin Çözümünde Küme Algoritmaları Üzerine Bir Vaka Çalışması: A Case Study on Cluster Algorithms in Solving Classification Problems with R Programming Language
Giriş Küme geçmeden önce temel kavramları açıklamak konunun anlaşılması açısından önem taşıdığından ilk olarak kısaca bu kavramlara yer verilmiştir. Küme, benzer özellikleri içinde barındıran topluluk olarak tanımlanabilir. Bu topluluk insan, hayvan, bitki topluluğu olabileceği gibi nesnelerin oluşturduğu topluluk da olabilir. Benzer özellikler taşıyan bu topluluklar diğer kümelerden farklılaşır. Kümeleme (clustering) analizini ise benzer özelliklere sahip […]
Devamını OkuR Programlama Diliyle Regresyon Problemlerinin Çözümünde Rastgele Orman Algoritması Üzerine Bir Vaka Çalışması: A Case Study on Random Forest (RF) Algorithm in Solving Regression Problems with R Programming Language
Giriş Rastgele Orman (RF) algoritması , 2001 yılında Breiman tarafından karar ağaçlarının bir kombinasyonu olarak önerilmiştir. RF en iyi “her ağaç, bağımsız olarak örneklenen ve ormandaki tüm ağaçlar için aynı dağılıma sahip rastgele bir vektörün değerlerine bağlı olacak şekilde ağaç belirleyicilerinin kombinasyonu” olarak tanımlanan bir topluluk makine öğrenme algoritmasıdır. Topluluk algoritması gerek regresyon gerekse sınıflandırma […]
Devamını OkuR Programlama Diliyle Sınıflandırma Problemlerinin Çözümünde Rastgele Orman Algoritması Üzerine Bir Vaka Çalışması: A Case Study on Random Forest (RF) Algorithm in Solving Classification Problems with R Programming Language
Giriş Rastgele Orman (RF) algoritması , 2001 yılında Breiman tarafından karar ağaçlarının bir kombinasyonu olarak önerilmiştir. RF en iyi “her ağaç, bağımsız olarak örneklenen ve ormandaki tüm ağaçlar için aynı dağılıma sahip rastgele bir vektörün değerlerine bağlı olacak şekilde ağaç belirleyicilerinin kombinasyonu” olarak tanımlanan bir topluluk makine öğrenme algoritmasıdır. Topluluk algoritması gerek regresyon gerekse sınılandırma […]
Devamını OkuR’da Karar Ağacı Üzerine Bir Vaka Çalışması: A Case Study on Decision Tree in R
Günümüzde veri madenciliği uygulamalarının yaygınlaşması ve büyük veri kavramının öne çıkmasıyla birlikte analiz metotları da değişmiştir. Bugüne kadar genellikle bulut (cloud) veri tabanları üzerindeki veri setleri indirilerek analize konu ediliyordu. Ancak gelişen teknoloji veri madenciliği yöntemlerinde de önemli değişiklikler ve bazı soruları beraberinde getirmiştir. Bu sorulardan bazıları şöyledir: Online veya offline olarak dokümanlarda analize konu […]
Devamını Oku