Logo Logo
  • Ana Sayfa
  • Hakkında
  • Kategoriler
    • Genel
    • İstatistik
    • Makine Öğrenme
    • Model Geliştirme
    • Sağlık
    • Teknoloji
  • Tüm Yazılarım
  • İletişim

İletişim

  • Email buluttevfik@gmail.com

Site Haritası

  • Ana Sayfa
  • Hakkında
  • İletişim

Sosyal Medya Adresleri

Şans Oyunları Perspektifinden Olasılık III: Probability from Perspective of the Chance Games III

  • ANA SAYFA
  • Blog Details
Ağustos 30 2020
  • İstatistik

Rastlantı ya da kesin olmayan olaylarla ilgilenen olasılık teorisi, rastlantı olaylarını belirli kurallara göre matematik disiplininde inceleyen bir bilim dalıdır. Burada, rastlantı olayından kasıt gerçekleşmesi şansa bağlı olan önceden bilinmeyen olaylardır. Burada olabildiğince yalın bir şekilde uygulamalı örneklerin şans oyunları üzerinden verilmesinin nedeni olasılık konusuna dikkat çekmek ve olasılık konusuyla ilgileneceklere katkıda bulunmaktır. Yoksa amaç bu oyunları oynamaya özendirmek veya teşvik emek değildir. Bunu burada özellikle ifade etmek gerekir.

Çalışma kapsamında R programlama dili ve Microsoft Office Excel kullanılarak şans oyunlarından biri olan 10 Numara kombinasyonları ve olasılıkları hesaplanarak kazanma olasılıkları karşılaştırmalı olarak verilmiştir.

Rastlantı ya da kesin olmayan olaylarla ilgilenen olasılık teorisi, rastlantı olaylarını belirli kurallara göre matematik disiplininde inceleyen bir bilim dalıdır. Burada, rastlantı olayından kasıt gerçekleşmesi şansa bağlı olan önceden bilinmeyen olaylardır.

10 Numara kazanma olasılıklarının hesaplanmasında kesikli olasılık dağılımlarından biri ola Hipergeometrik Olasılık Dağılımı (Hypergeometric Probability Distribution) kullanılmıştır.

Hypergeometrik Dağılım

Hipergeometrik dağılım basit tekrarsız tesadüfi örneklem (iadesiz örneklem) seçiminin yapıldığı denemedir. Hipergeometik dağılımın varsayımları şöyledir:

  • Her deneyin olası iki sonucu vardır.
  • Deneyin tekrarlanma sayısı (n) sabittir.
  • Deneyler birbirinden bağımsızdır.

Hipergeometrik dağılımında kullanılan parametreler Tablo 1’de verilmiştir. Eşitliklerde bir deneyde istenen sonucun ortaya çıkma olasılığı, diğer bir ifadeyle başarı olasılığı p, istenen sonucun ortaya çıkmama olasılığı ise q=1-p‘dir. Tekrarsız örnekleme söz konusu olduğu için başarı olasılığı (p) deneyden deneye farklılık göstermektedir.

Tablo 1: Hipergeometrik Dağılım Parametreleri

Hipergeometrik Olasılık Kütle Fonksiyonu (PMF)

Tablo 1’deki parametreler kullanılarak oluşturulan Hipergeometrik olasılık kütle fonksiyonu (PMF) aşağıdaki eşitlikte verilmiştir. Parantez içindeki eşitlikler tekrarsız kombinasyonları ifade etmektedir.

Eşitlikte N anakütle eleman sayısını, m popülasyondaki başarı sayısını, x örneklemdeki başarı sayısını, n örneklem hacmini göstermektedir.

Örnek Uygulamalar

Örnek uygulamalara geçilmeden önce R’da yüklenmesi gereken kütüphaneleri aşağıda verelim. Daha önce aşağıdaki kütüphaneler kurulmamışsa lütfen kurunuz. R studio’yu sıklıkla kullandığım için gerek arayüzünün kullanım kolaylığı gerekse verimli olması açısından R konsol yerine R Studio arayüzünün kullanılması önerilmektedir. Eğer R yüklü değilse yapılan bu işlemleri bulutta yer alan R programlama yazılımını da kullanarak yapabilir ve R Studio arayüzünden bu platform üzerinden yararlanabilirsiniz. Sıklıkla bulut üzerindeki R Studio’yu da şahsen kullanmaktayım. Aşağıda linkten buluta giriş sağlayabilirsiniz. Sıklıkla

RStudio Cloud: https://login.rstudio.cloud/

gereklikütüphaneler<-sapply(c("dplyr","tibble","tidyr","ggplot2","formattable","ggthemes","readr","readxl","xlsx","ggpubr","formattable", "ggstance","vcd"), require, character.only = TRUE)
gereklikütüphaneler

Örnek: 10 Numara şans oyununda haznede 80 top bulunmaktadır. İçerisinden iadesiz seçilen 22 toptan sırasıyla hiç bilmeyene (0 bilen), 6, 7, 8, 9 ve 10 bilene ikramiye verilmektedir.

İstenenler

  1. 10 Numara şans oyunu olasılık fonksiyonunu bulunuz.
  2. 10 Numara şans oyununda sırasıyla hiç bilmeme (0 bilme), 6, 7, 8, 9 ve 10 olasılıklarını sırasıyla hesaplayınız.

Bilinenler

  • N= 80 (Anakütledeki eleman sayısı)
  • x=0 ve 6’dan 10’a kadar (dahil) (Örneklemdeki başarı sayısı)
  • m=10 (Popülasyondaki başarı sayısı)
  • n= 22 (Örneklem hacmi)

Çözüm

  1. Bilinenleri Hipergeometrik kütle olasılık fonksiyonunda yerine koyarsak 10 Numara şans oyunu olasılık fonksiyonu aşağıdaki gibi olacaktır. Parantez içindeki eşitlikler tekrarsız kombinasyonları göstermektedir.

2. 10 numara şans oyununda sırasıyla hiç bilmeme (0 bilme), 6, 7, 8, 9 ve 10 olasılıkları aşağıda yazılan R kod bloğunda hesaplanmıştır.

#bilinenler
N=80#Anakütledeki eleman sayısı (N) 80'dir.
x=c(0, 6:10)#Örneklemdeki başarı sayısı (x) 0 ve 6'dan 10'a kadar (dahil). Burada kazanma olasılıklarının vektör içerisinde tanımlanmasının nedeni aşağıda for döngüsü işlevi görmesinin sağlanarak birden fazla olasılık fonksiyonu yazılmamak istenmemesidir. Böylece işlem süresi kısaltılmış ve işlem yükü de azaltılmıştır.
m=10#Popülasyondaki başarı sayısı (m) 10'dur.
n=22#Örneklem hacmi (n) 22'dir.

#Tablo oluşturma
tablo<-tibble(Kategori=c("Sıfır", "Altı", "Yedi", "Sekiz", "Dokuz", "On"),Kazanma_Olasılığı=as.numeric(choose(m,x)*choose(N-m,n-x)/choose(N,n))) %>% mutate(Tersine_Olasılık=1/Kazanma_Olasılığı) %>% mutate_if(is.numeric, round, 10) 
tablo
#formatlanmış tablo
formattable(tablo,
            align =rep("r",3), 
            list(formatter(
              "span", style = ~ style(color = "grey",font.weight = "bold")),
`Kazanma_Olasılığı` = color_bar("#FA614B"),
`Tersine_Olasılık` = color_bar("#B0C4DE")
))

Yukarıdaki R kod bloğunun çalıştırılmasından sonra 10 Numara şans oyununda sırasıyla hiç bilmeme (0 bilme), 6, 7, 8, 9 ve 10 olasılıkları aşağıdaki tabloda verilmiştir. Aynı zamanda daha kolay anlayabilmeniz için hesaplanan olasılıkların çarpmaya göre tersi (1/Olasılık) alınmış ve tabloya yansıtılmıştır. Ortaya konulan bulgulara göre 10 numara şans oyununda

  • Hiç bilmediğinizde kazanma olasılığınız yaklaşık 31,55’te 1’dir.
  • 6 bildiğinizde kazanma olasılığınız yaklaşık 52,01’de 1’dir.
  • 7 bildiğinizde kazanma olasılığınız yaklaşık 312,88’de 1’dir.
  • 8 bildiğinizde kazanma olasılığınız yaklaşık 3.114,94’te 1’dir.
  • 9 bildiğinizde kazanma olasılığınız yaklaşık 57.070,07’de 1’dir.
  • 10 bildiğinizde kazanma olasılığınız yaklaşık 2.546.203,19’da 1’dir.

Yukarıda R’da hesapladığım 10 Numara kazanma olasılıklarını aynı zamanda aşağıda R’da yazdığım for döngüsü kullanarak da yapabiliriz.

N=80#Anakütledeki eleman sayısı (N) 80'dir.
x=c(0, 6:10)#Örneklemdeki başarı sayısı (x) 0 ve 6'dan 10'a kadar (dahil)
m=10#Popülasyondaki başarı sayısı (m) 10'dur.
n=22#Örneklem hacmi (n) 22'dir.

for (i in seq_along(x)) {
  x[i] <-choose(m,x[i])*choose(N-m,n-x[i])/choose(N,n)
  x[i]<-1/x[i]
}
print(paste(c(0, 6:10),"kazanma olasılığı:", round(x,5),"'de 1'dir."))

Yukarıdaki R kod bloğunun çalıştırılmasından sonra elde edilen 10 Numara kazanma olasılıkları kazanma kategorilerine göre aşağıda verilmiştir.

[1] "0 kazanma olasılığı: 31.5544 'de 1'dir."       
[2] "6 kazanma olasılığı: 52.01191 'de 1'dir."      
[3] "7 kazanma olasılığı: 312.88416 'de 1'dir."     
[4] "8 kazanma olasılığı: 3114.93568 'de 1'dir."    
[5] "9 kazanma olasılığı: 57070.07157 'de 1'dir."   
[6] "10 kazanma olasılığı: 2546203.19328 'de 1'dir."

Yukarıda hesaplanan 10 numara şans oyununda sırasıyla hiç bilmeme (0 bilme), 6, 7, 8, 9 ve 10 olasılıkları R bilmeyenler için ayrıca Microsoft Office Excel ortamında da hesaplanmıştır. Excel ortamında ilk olarak bilinenler tablosunu aşağıda verelim.

Yukarıdaki bilinenler tablosuna göre excel ortamında hesaplanan 10 Numara şans oyunu kazanma olasılıkları kategorilere göre aşağıda verilmiştir.

Şimdi yapılan bu işlemleri excel ortamında kullanılan fonksiyonları da görebilmeniz adına aşağıda xlsx formatında paylaşıyorum.

Kazanma Olasılıklarıİndir

Özetle R’da ve Microsoft Excel’de yapılan bu çalışmayla olasılık teorisinde yer alan Hipergeometrik olasılık dağılımı kullanılarak şans oyunları özelinde olasılık teorisine dikkat çekilmeye çalışılmıştır.

Daha önce Şans oyunları özelinde örnek uygulama yaptığım çalışmaların linklerini de aşağıda paylaşıyorum ilgilenenler için.

Şans Oyunları Perspektifinden Olasılık

Şans Oyunları Perspektifinden Olasılık II

Faydalı olması ve farkındalık oluşturması dileğiyle.

Bilimle ve teknolojiyle kalınız.

Saygılarımla.

Not: Kaynak gösterilmeden alıntı yapılamaz veya kopyalanamaz.

Note: It can not be cited or copied without referencing.

Yararlanılan Kaynaklar

  • https://tevfikbulut.com/2020/08/30/hipergeometrik-olasilik-dagilimi-uzerine-bir-vaka-calismasi-a-case-study-on-hypergeometric-probability-distribution/
  • https://www.sciencedirect.com/topics/engineering/hypergeometric-distribution
  • https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119197096.app03
  • http://www.math.ucsd.edu/~gptesler/186/slides/186_hypergeom_17-handout.pdf
  • https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-04898-2_294
  • https://tr.wikipedia.org/wiki/Hipergeometrik_da%C4%9F%C4%B1l%C4%B1m
  • https://web.stanford.edu/class/bios221/labs/simulation/Lab_3_simulation.html
  • https://www.sciencedirect.com/topics/computer-science/geometric-distribution/pdf
  • https://online.stat.psu.edu/stat504/node/169/
  • https://cran.r-project.org/web/packages/ggpubr/ggpubr.pdf
  • http://www.mas.ncl.ac.uk/~nag48/teaching/MAS1403/notes4.pdf
  • https://tevfikbulut.com/2020/07/23/rda-poisson-ve-negatif-binom-regresyon-yontemleri-uzerine-bir-vaka-calismasi-a-case-study-on-poisson-and-negative-binomial-regression-methods-in-r/
  • https://my.ilstu.edu/~wjschne/442/SimulatingRandomData.html#discrete-uniform-distribution
  • https://en.wikipedia.org/wiki/Discrete_uniform_distribution
  • http://www.hcs.harvard.edu/cs50-probability/binomial.php
  • http://people.stern.nyu.edu/adamodar/New_Home_Page/StatFile/statdistns.htm
  • https://statisticsglobe.com/bernoulli-distribution-in-r-dbern-pbern-qbern-rbern
  • https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Distributions.html
  • https://my.ilstu.edu/~wjschne/442/SimulatingRandomData.html#bernoulli-distribution
  • https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm
  • RStudio Cloud: https://login.rstudio.cloud/
  • Matematiksel İstatistik, İsmail Erdem, Gözden Geçirilmiş ve Genişletilmiş 3. Baskı.
  • The R Project for Statistical Computing. https://www.r-project.org/
  • Microsoft Office Excel 2010 Version, Microsoft Corporation. Technology company. Redmond, Washington, United States
  • https://online.stat.psu.edu/stat504/node/57/#:~:text=The%20Poisson%20Model%20(distribution)%20Assumptions,the%20same%20for%20all%20teams.
  • http://kisi.deu.edu.tr//kemal.sehirli/B%c3%b6l%c3%bcm%204%20-%20Part1(d%c3%bczeltme).pdf
  • https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Geometric.html
  • http://www.imatheq.com/imatheq/com/imatheq/math-equation-editor.html
  • https://tr.wikipedia.org/wiki/Hipergeometrik_da%C4%9F%C4%B1l%C4%B1m
  • http://www-eio.upc.es/teaching/pe/www.computing.dcu.ie/~jhorgan/chapter12slides.pdf
  • https://tevfikbulut.com/2020/08/02/sans-oyunlari-perspektifinden-olasilik-probability-from-the-perspective-of-chance-games/
  • https://www.mathworks.com/help/stats/hygecdf.html
  • https://en.wikipedia.org/wiki/Hypergeometric_distribution
  • http://www.imatheq.com/corpsite/index.html
  • http://www.math.ucsd.edu/~gptesler/186/slides/186_hypergeom_17-handout.pdf
  • http://www-eio.upc.es/teaching/pe/www.computing.dcu.ie/~jhorgan/chapter12slides.pdf
  • https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Hypergeometric.html
Önceki yazı Sonraki Yazı
10 NumaraBernoulli Olasılık DağılımıBinom Olasılık DağılımıBinomial Probability DistributionCDFChance GamesDiscrete Uniform DistributionFonskiyonGeometric Probability DistributionGeometrik DağılımHipergeometrik DağılımHypergeometric DistributionKesikli Tekdüze DağılımKesikli Uniform DağılımıKitle Olasılık FonksiyonuKümülatif Olasılık DağılımıOlasılıkOlasılık DağılımlarıOlasılıklı ÖrneklemPMFProbability DistributionProbability Mass DistributionProbability SamplingŞans Oyunları

Yorum Yaz Cevabı iptal et

Son Yazılar

  • Kanada Sağlık Sisteminde Bekleme Süreleri
  • Araştırma Metodolojisi Notları-II
  • Araştırma Metodolojisi Notları-I
  • Microsoft Excel’de Bulut Endeks-Beta [BE-β] Simülasyonu
  • R’da Statik ve Dinamik Haritalama Vaka Çalışmaları: Türkiye Örneği

Son Yorumlar

  1. Küresel İnovasyon Endeksi 2021 Yılı Raporu ve Türkiye - winally.com - Küresel İnovasyon Endeksi’nde Türkiye Ne Durumda?
  2. R’da Birliktelik Kuralları | canözkan - Apriori Algoritması Üzerine Bir Vaka Çalışması: A Case Study on Apriori Algorithm
  3. Tevfik BULUT - Python’da Şans Oyunları Perspektifinden Olasılık : Probability from Perspective of the Chance Games in Python
  4. Ahmet Aksoy - Python’da Şans Oyunları Perspektifinden Olasılık : Probability from Perspective of the Chance Games in Python
  5. Tevfik BULUT - Z Tablosuna Göre Güven Aralığının Hesaplanmasına Yönelik Bir Simülasyon Çalışması: A Simulation Study for Calculating Confidence Interval by Z Table

Arşivler

  • Ocak 2023
  • Ekim 2022
  • Eylül 2022
  • Nisan 2022
  • Mart 2022
  • Ekim 2021
  • Eylül 2021
  • Ağustos 2021
  • Temmuz 2021
  • Haziran 2021
  • Mayıs 2021
  • Nisan 2021
  • Şubat 2021
  • Ocak 2021
  • Aralık 2020
  • Kasım 2020
  • Ekim 2020
  • Eylül 2020
  • Ağustos 2020
  • Temmuz 2020
  • Haziran 2020
  • Mayıs 2020
  • Nisan 2020
  • Mart 2020
  • Şubat 2020
  • Ocak 2020
  • Aralık 2019
  • Kasım 2019
  • Ekim 2019
  • Eylül 2019
  • Ağustos 2019
  • Mayıs 2019
  • Şubat 2019
  • Aralık 2018
  • Eylül 2018
  • Ağustos 2018
  • Temmuz 2018
  • Mayıs 2018
  • Nisan 2018
  • Ekim 2017
  • Temmuz 2017
  • Haziran 2017
  • Mayıs 2017
  • Ocak 2017

Kategoriler

  • Genel
  • İstatistik
  • Makine Öğrenme
  • Model Geliştirme
  • Sağlık
  • Teknoloji

Kategoriler

  • Genel
  • İstatistik
  • Makine Öğrenme
  • Model Geliştirme
  • Sağlık
  • Teknoloji

Etiketler

Accuracy Basit Tesadüfi Örnekleme Bernoulli Olasılık Dağılımı Confusion Matrix Coronavirus Doğruluk Doğruluk Oranı Dünya Sağlık Örgütü EDA Epidemi Epidemiyology Epidemiyoloji Exploratory Data Analysis Exploratory Data Analysis (EDA) F1 Forecast Keşifsel Veri Analizi Kitle Olasılık Fonksiyonu Koronavirüs Koronavirüs Salgını Olasılık Olasılıklı Örneklem OSB Pandemi Point Estimation Point Forecast Prevalance Prevalans Probability Sampling R Recall Salgın Sağlık Bakanlığı Simple Random Sampling Tahmin TBATS TURKEY TÜRKİYE Veri Madenciliği WHO World Health Organization Yapay Zeka ÇKKV Örneklem Örneklem Büyüklüğü
Logo

Burada, gazete ve dergilerde yayınlanan çalışmalarımın tamamı çalışmakta olduğum kurumdan bağımsız olarak özel hayatımda yaptığım çalışmalardır. Dolayısıyla, burada yer alan çalışmalardan emeğe saygı adına kaynak gösterilmesi suretiyle azami ölçüde herkes yararlanabilir.

Site Haritası

  • Ana Sayfa
  • Hakkında
  • Blog
  • İletişim

Linkler

  • winally.com

Bana Ulaşın

Bu sayfa, bazı temel bilgilerin ve bir iletişim formunun yer aldığı bir iletişim sayfasıdır. Suç teşkil edecek, yasadışı, tehditkar, rahatsız edici, hakaret ve küfür içeren, aşağılayıcı, küçük düşürücü, kaba, müstehcen, ahlaka aykırı, kişilik haklarına zarar verici ya da benzeri niteliklerde içeriklerden doğan her türlü mali, hukuki, cezai, idari sorumluluk içeriği gönderen Kişilere aittir.

  • Email: buluttevfik@gmail.com

© Copyright 2022 Tevfik Bulut